If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+8n+1=0
a = 4; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·4·1
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{3}}{2*4}=\frac{-8-4\sqrt{3}}{8} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{3}}{2*4}=\frac{-8+4\sqrt{3}}{8} $
| 52.02-n=38.45 | | 10+4x=5-5x | | 6x^2-6=90 | | 4.9x^2-20x+84=0 | | 28-4(x-5)=-4x=3 | | 28-4(x-5)=-4x=5 | | 28-4(x-5)=-4x=13 | | x+2x-80=0 | | 3x-3/4=-18 | | 2z/7-1=-8 | | 1=x+01 | | x+(x*0,5)=1000000 | | 10+15t=100 | | 8x-24=2x+30 | | (54-2x)(35-2x)=0 | | (5-7x)(7-7x)=0 | | 6x+25=8-+9 | | 6x-22=3x-4 | | 2x-5=16+2x | | x-50=0.5*x | | 7x+36=10+9 | | 9x-32=4x-7 | | x*x*x+x*x=2 | | 22+n=133 | | 8x+6=74 | | 15x^2-8x+4=0 | | 0.6x-1.8=1.5x | | 10=x/5+2 | | 5x+45=3x+13 | | 10-p(3p-4)=4(p+1)+9 | | -31+x=-3 | | 21.4=x-1.6 |